
Aloe Documentation
Release 0.1.20.dev8+g52925ba.d20191025

Alexey Kotylarov

Oct 25, 2019

Contents

1 Running Aloe 3

2 Writing Features 5
2.1 Feature . 5
2.2 Background . 5
2.3 Scenario . 6
2.4 Scenario Outline . 6
2.5 Tags . 6
2.6 Feature Loading . 7

3 Defining Steps 9
3.1 Common regular expressions for capturing data . 10
3.2 Step loading . 11
3.3 Tools for step writing . 11
3.4 Writing good BDD steps . 11

4 Hooks 15

5 World 17

6 Features, Scenarios and Steps 19
6.1 Feature . 19
6.2 Background . 20
6.3 Scenario . 20
6.4 Step . 20

7 Optional Extras 23
7.1 Factory Boy Integration . 23
7.2 Sphinx Extensions . 24

8 Extending Aloe 27

9 Extensions 29

10 Porting from Lettuce 31

11 Getting Started 33

i

12 History 37

13 Indices and tables 39

Python Module Index 41

Index 43

ii

Aloe Documentation, Release 0.1.20.dev8+g52925ba.d20191025

Aloe is a Gherkin-based Behavior Driven Development tool for Python based on Nose.

Contents 1

https://cucumber.io/
https://nose.readthedocs.io/

Aloe Documentation, Release 0.1.20.dev8+g52925ba.d20191025

2 Contents

CHAPTER 1

Running Aloe

The aloe helper runs Nose with the Aloe plugin enabled.

aloe accepts the same flags as nosetests and so these are not extensively documented here.

<feature>
Run only the specified feature files.

-n N[,N...]
Only run the specified scenarios (by number, 1-based) in each feature. Makes sense when only specifying one
feature to run, for example:

aloe features/calculator.feature -n 1

--test-class
Override the class used as a base for each feature.

--no-ignore-python
Run Python tests as well as Gherkin.

-a attr
Run features and scenarios with the given tag. (This is a Nose flag, but works the same for Gherkin tags.)

-a '!attr'
Run features and scenarios that do not have the given tag.

3

https://nose.readthedocs.io/
https://github.com/aloetesting/aloe

Aloe Documentation, Release 0.1.20.dev8+g52925ba.d20191025

4 Chapter 1. Running Aloe

CHAPTER 2

Writing Features

The standard Gherkin syntax is supported, including scenario outlines, doc strings, data tables and internationalization.

2.1 Feature

A feature is a single file that typically defines a single story. It has a name and an optional description, an optional
background and many scenarios.

Feature: Search

As a user
I want to do a search for something not in the default categories
So that I can provide more detailed search parameters

A feature may also have tags.

2.2 Background

The background is an optional section that is run before every scenario and contains steps. It is used to set up fixtures
common to each scenario of the feature.

A background does not have a name or tags.

If a step fails during the background the scenario will fail.

Background:
Given my location is Melbourne, Victoria

5

https://cucumber.io/docs/reference

Aloe Documentation, Release 0.1.20.dev8+g52925ba.d20191025

2.3 Scenario

Scenarios are the individual tests that make up a feature. Scenarios have a name and may optionally tags. The scenario
consists of a number of steps.

If a step fails the scenario will fail.

Scenario: Check the results
When I search for "pet food" and press enter

A step with a multiline string.
Then I should see the text:
"""
1 result found in 0.15 seconds.
"""

A step with a table.
And I should see the results:

| Name (primaryText) | Description (secondaryText) |
| Pets Inc | Your one stop pet shop |

2.4 Scenario Outline

A scenario outline is a template for building scenarios from the rows of a table named Examples. Parameters are
written in the form <Parameter>, where each named parameter must be present in the table.

Scenario outlines have a name and may optionally have tags.

Scenario Outline: Search is correctly escaped
When I search for "<Phrase>" and press enter
Then I should be at <URL>

Examples:
Phrase	URL
pets	/search/pets
pet food	/search/pet%20food

2.5 Tags

Feature and scenario tags are specified using the form @tag_name and are converted to Nose attribute tags, and can
be run/excluded using -a.

Feature: Search

@integration
Scenario: Live server works as expected

When I search for "pet food"
Then I should see >1 result

See docs for the Attribute selector plugin for more information.

6 Chapter 2. Writing Features

https://nose.readthedocs.io/en/latest/plugins/attrib.html

Aloe Documentation, Release 0.1.20.dev8+g52925ba.d20191025

2.6 Feature Loading

If features are not specified on the command line, Aloe will look for features in directories that are both:

• Named features;

• Located in a directory containing packages, that is, all their parent directories have an __init__.py file.

For example, given the following directory structure, only one, three and seven features will be run:

one/
__init__.py
features/

one.feature
two/

three.feature
examples/

four.feature
five/

__init__.py
six/

features/
seven.feature

eight/
nine/

features/
ten.feature

four will not be run because it is not in a directory named features. ten will not be run because its parent
directory, nine, is not a package. This prevents discovering features of dependent packages if they are in a virtualenv
inside the project directory.

2.6. Feature Loading 7

Aloe Documentation, Release 0.1.20.dev8+g52925ba.d20191025

8 Chapter 2. Writing Features

CHAPTER 3

Defining Steps

aloe.step(sentence=None)
Decorates a function, so that it will become a new step definition.

You give step sentence either (by priority):

• with step function argument;

• with function doc; or

• with the function name exploded by underscores.

Parameters can be passed to steps using regular expressions. Parameters are passed in the order they are captured.
Be aware that captured values are strings.

The first parameter passed into the decorated function is the Step object built for this step.

Examples:

@step("I go to the shops")
def _i_go_to_the_shops_step(self):

'''Implements I go to the shops'''

...

@step
def _i_go_to_the_shops_step(self):

'''I go to the shops'''

...

@step(r"I buy (\d+) oranges")
def _purchase_oranges_step(self, num_oranges):

'''Buy a certain number of oranges'''

num_oranges = int(num_oranges)

...

9

Aloe Documentation, Release 0.1.20.dev8+g52925ba.d20191025

Steps can be passed a table of data.

Given the following users are registered:
Username	Real name
danni	Danni
alexey	Alexey

This is exposed in the step as Step.table and Step.hashes.

@step(r'Given the following users? (?:is|are) registered:')
def _register_users(self):

'''Register the given users'''

for user in guess_types(self.hashes):
register(username=user['Username'],

realname=user['Real name'])

Steps can be passed a multi-line “Python string”.

Then I see a warning dialog:
"""
Changes could not be saved.

[Try Again]
"""

This is exposed in the step as Step.multiline.

The registered function will have an unregister() method that removes all the step definitions that are
associated with it.

3.1 Common regular expressions for capturing data

String

Given I logged in as "alexey"

@step(r'I logged in as "([^"]*)"')

Number

Then the price should be $12.99

@step(r'The price should be \$(\d+(?:\.\d+)?)')

Path/URI/etc.

Given I visit /user/alexey/profile

@step(r'I visit ([^\s]+)')

10 Chapter 3. Defining Steps

Aloe Documentation, Release 0.1.20.dev8+g52925ba.d20191025

3.2 Step loading

Steps can and should be defined in separate modules to the main application code. Aloe searches for modules to load
steps from inside the features directories.

Steps can be placed in separate files, for example, features/steps/browser.py and features/steps/
data.py, but all those files must be importable, so this requires creating a (possibly empty) features/steps/
__init__.py alongside.

Additional 3rd-party steps (such as aloe_django) can be imported in from your __init__.py.

An imported step can be overridden by using unregister() on the function registered as a step. It can be then
reused by defining a new step with the same or different sentence.

3.3 Tools for step writing

Useful tools for writing Aloe steps.

See also aloe.world.

aloe.tools.guess_types(data)
Converts a record or list of records from strings contained in outlines, table or hashes into a version with the
types guessed.

Parameters data – a Scenario.outlines, Step.table, Step.hashes or any other
list, list of lists or list of dicts.

Will guess the following (in priority order):

• bool (true/false)

• None (null)

• int

• date in ISO format (yyyy-mm-dd)

• str

The function operates recursively, so you should be able to pass nearly anything to it. At the very least basic
types plus dict and iterables.

aloe.tools.hook_not_reentrant(func)
Decorate a hook as unable to be reentered while it is already in the stack.

Any further attempts to enter the hook before exiting will be replaced by a no-op.

This is generally useful for step hooks where a step might call Step.behave_as() and trigger a second
level of step hooks i.e. when displaying information about the running test.

3.4 Writing good BDD steps

It’s very easy with BDD testing to accidentally reinvent Python testing using a pseudo-language. Doing so removes
much of the point of using BDD testing in the first place, so here is some advice to help write better BDD steps.

1. Avoid implementation details

If you find yourself specifying implementation details of your application that aren’t important to your behaviors,
abstract them into another step.

3.2. Step loading 11

https://aloe.readthedocs.io/projects/aloe-django/
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

Aloe Documentation, Release 0.1.20.dev8+g52925ba.d20191025

Implementation:

When I fill in username with "danni"
And I fill in password with "secret"
And I press "Log on"
And I wait for AJAX to finish

Behavioral:

When I log on as "danni" with password "secret"

You can use Step.behave_as() to write a step that chains up several smaller steps.

Implementation:

Given the following flags are set:
| flags |
| user_registration_disabled |
| user_export_disabled |

Behavioral:

Given user registration is disabled
And user export is disabled

Remember you can generate related steps using a loop.

for description, flag in (...):
@step(description + ' is enabled')
def _enable_flag(self):

set_flag(flag, enabled=True)

@step(description + ' is disabled')
def _disable_flag(self):

set_flag(flag, enabled=False)

Furthermore, steps that are needed by all features can be moved to a each_example() callback.

If you want to write reusable steps, you can sometimes mix behavior and declaration.

Then I should see results:
| Business Name (primaryText) | Blurb (secondaryText) |
| Pet Supplies.com | An online store for... |

2. Avoid conjunctions in steps

If you’re writing a step that contains an and or other conjunction consider breaking your step into two.

Bad:

When I log out and log back in as danni

Good:

When I log out
And I log in as danni

You can pass state between steps using world.

12 Chapter 3. Defining Steps

Aloe Documentation, Release 0.1.20.dev8+g52925ba.d20191025

3. Support natural language

It’s easier to write tests if the language they support is natural, including things such as plurals.

Unnatural:

Given there are 1 users in the database

Natural:

Given there is 1 user in the database

This can be done with regular expressions.

@step('There (?:is|are) (\d+) users? in the database')

3.4. Writing good BDD steps 13

Aloe Documentation, Release 0.1.20.dev8+g52925ba.d20191025

14 Chapter 3. Defining Steps

CHAPTER 4

Hooks

Hooks can be installed to run before, around and after part of the test.

Hooks can be used to set up and flush test fixtures, apply mocks or capture failures.

class aloe.before

@all
Run this function before everything.

Example:

from aloe import before

@before.all
def before_all():

print("Before all")

@each_feature
Run this function before each feature.

Parameters feature (Feature) – the feature about to be run

Example:

from aloe import before

@before.each_feature
def before_feature(feature):

print("Before feature")

@each_example
Run this function before each scenario example.

Parameters

• scenario (Scenario) – the scenario about to be run

15

Aloe Documentation, Release 0.1.20.dev8+g52925ba.d20191025

• outline (dict) – the outline of the example about to be run

• steps (list) – the steps about to be run

Example:

from aloe import before

@before.each_example
def before_example(scenario, outline, steps):

print("Before example")

@each_step
Run this function before each step.

Parameters step (Step) – the step about to be run

Example:

from aloe import before

@before.each_step
def before_step(step):

print("Before step")

class aloe.after
Run functions after an event. See aloe.before.

Example:

from aloe import after

@after.each_step
def after_step(step):

print("After step")

class aloe.around
Define context managers that run around an event. See aloe.before.

Example:

from contextlib import contextmanager

from aloe import around

@around.each_step
@contextmanager
def around_step(step):

print("Before step")
yield
print("After step")

16 Chapter 4. Hooks

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list

CHAPTER 5

World

As a convenience, Aloe provides a world object that can be used to store information related to the test process.
Typical usage includes storing the expected results between steps, or objects or functions that are useful for every step,
such as an instance of a Selenium browser.

Aloe does not explicitly reset world between scenarios or features, so any clean-up must be done by the callbacks.

class aloe.world
Store arbitrary data. Shared between hooks and steps.

17

Aloe Documentation, Release 0.1.20.dev8+g52925ba.d20191025

18 Chapter 5. World

CHAPTER 6

Features, Scenarios and Steps

6.1 Feature

class aloe.parser.Feature
A complete Gherkin feature.

Features can either be constructed from_file() or from_string().

description
The description of the feature (the text that comes directly under the feature).

dialect
The Gherkin dialect for the feature.

classmethod from_file(filename, language=None)
Parse a file or filename into a Feature.

classmethod from_string(string, language=None)
Parse a string into a Feature.

location
Location as ‘filename:line’

classmethod parse(string=None, filename=None, language=None)
Parse either a string or a file.

tags
Tags for a feature.

Tags are applied to a feature using the appropriate Gherkin syntax:

@tag1 @tag2
Feature: Eat leaves

19

Aloe Documentation, Release 0.1.20.dev8+g52925ba.d20191025

6.2 Background

class aloe.parser.Background
The background of all Scenario in a Feature.

feature
The Feature this scenario belongs to.

location
Location as ‘filename:line’

6.3 Scenario

class aloe.parser.Scenario
A scenario within a Feature.

name
The name of this scenario.

feature
The Feature this scenario belongs to.

outlines
The examples for this scenario outline as a list of dicts mapping column name to value.

location
Location as ‘filename:line’

outlines_table
Return the scenario outline examples as a table.

tags
Tags for the feature and the scenario.

6.4 Step

class aloe.parser.Step
A single statement within a test.

A Scenario or Background is composed of multiple Step.

scenario
The Scenario this step belongs to (if inside a scenario).

background
The Background this step belongs to (if inside a background).

test
The instance of unittest.TestCase running the current test, or None if not currently in a test (e.g.
in a each_feature() callback).

testclass
The unittest.TestCase used to run this test. Use test for the instance of the test case.

passed
The step passed (used in after and around).

20 Chapter 6. Features, Scenarios and Steps

https://docs.python.org/3/library/unittest.html#unittest.TestCase
https://docs.python.org/3/library/unittest.html#unittest.TestCase

Aloe Documentation, Release 0.1.20.dev8+g52925ba.d20191025

failed
The step failed (used in after and around).

behave_as(sentence)
Execute another step.

Example:

self.behave_as("Given I am at the market")

given(sentence)
Execute another step.

Example:

self.given("I am at the market")

when(sentence)
Execute another step.

Example:

self.when("I buy two oranges")

then(sentence)
Execute another step.

Example:

self.then("I will be charged 60c")

container
The background or scenario that contains this step.

feature
The Feature this step is a part of.

hashes
Return the table attached to the step as an iterable of hashes, where the first row - the column headings -
supplies keys for all the others.

e.g.:

Then I have fruit:
| apples | oranges |
| 0 | 2 |

Becomes:

({
'apples': '0',
'oranges': '2',

},)

keys
Return the first row of a table if this statement contains one.

location
Location as ‘filename:line’

6.4. Step 21

Aloe Documentation, Release 0.1.20.dev8+g52925ba.d20191025

multiline = None
A Gherkin multiline string with the appropriate indenting removed.

Then I have poem:
"""
Glittering-Minded deathless Aphrodite,
I beg you, Zeus’s daughter, weaver of snares,
Don’t shatter my heart with fierce
Pain, goddess,
"""

outline = None
If this step is a part of an outline, the reference to the outline.

parse_steps_from_string(string, **kwargs)
Parse a number of steps, returns an iterable of Step.

This is used by step.behave_as().

sentence = None
The sentence parsed for this step.

table = None
A Gherkin table as an iterable of rows, themselves iterables of cells.

e.g.:

Then I have fruit:
| apples | oranges |
| 0 | 2 |

Becomes:

(('apples', 'oranges'), ('0', '2'))

22 Chapter 6. Features, Scenarios and Steps

CHAPTER 7

Optional Extras

7.1 Factory Boy Integration

Aloe integration with factory_boy to create objects from factories.

Remember when writing BDD tests to describe the behavior you want and not just use Aloe as a syntax for writing
complex tests (that defeats the point of BDD). Hide the complexity of setting up the objects in your factory or write a
custom step.

To activate these steps import aloe.steps.factoryboy into your steps/__init__.py.

aloe.steps.factoryboy.step_from_factory(factory)
Decorator to register a factory.Factory as an Aloe step:

Given/And I have (a/an/n) object(s)

An optional table can be passed containing attributes that would be passed as kwargs to factory.Factory.
create(). Multiple rows or a number of objects can be passed to create more than one object. If a
number of objects is requested, at most one row can be given, passed as kwargs to factory.Factory.
create_batch().

The name of the object and its plural can be specified as:

• _verbose_name and _verbose_name_plural attributes on the factory;

• If the factory creates a Django model, and its name corresponds to the model class name (e.g.
UserFactory and User), verbose_name and verbose_name_plural of the model;

If neither is specified, the object name is inferred from the factory class name.

Example:

@step_from_factory
class RandomUserFactory(factory.Factory):

'''See Factory Boy docs'''

class Meta:
(continues on next page)

23

https://factoryboy.readthedocs.io/en/latest/
https://factoryboy.readthedocs.io/en/latest/reference.html#factory.Factory
https://factoryboy.readthedocs.io/en/latest/reference.html#factory.Factory.create
https://factoryboy.readthedocs.io/en/latest/reference.html#factory.Factory.create
https://factoryboy.readthedocs.io/en/latest/reference.html#factory.Factory.create_batch
https://factoryboy.readthedocs.io/en/latest/reference.html#factory.Factory.create_batch

Aloe Documentation, Release 0.1.20.dev8+g52925ba.d20191025

(continued from previous page)

model = models.User

first_name = factory.Faker('first_name')
last_name = factory.Faker('last_name')

_verbose_name = "random user"

Given I have a random user
Then I have created 1 user: Lucy Murray (a random name)

Given I have 10 random users
Then I have created 10 users with different random names

Given I have random users:
first_name	last_name
Danielle	Madeley
Alexey	Kotlyarov

Then I have created 2 users: Danni and Alexey

Given I have 10 random users:
| first_name |
| Joe |

Then I have created 10 users all with the first name Joe

7.2 Sphinx Extensions

Extensions to Sphinx for documenting Aloe packages.

Add these extensions to your Sphinx conf.py:

extensions = [
'sphinx.ext.autodoc',
'aloe_sphinx.gerkindomain',
'aloe_sphinx.autosteps',

]

7.2.1 Gherkin Domain

aloe_sphinx.gherkindomain

The Gherkin Domain for Sphinx provides additional directives for documenting steps using Sphinx.

.. gherkin:restep:: Sentence regex
Provide the documentation for a Gherkin regular expression step.

For example:

.. gherkin:restep:: (?:Given|When|And) I visit the supermarket

I am at the supermarket.

Is rendered as:

24 Chapter 7. Optional Extras

http://sphinx-doc.org/
http://sphinx-doc.org/
http://sphinx-doc.org/

Aloe Documentation, Release 0.1.20.dev8+g52925ba.d20191025

Step (?:Given|When|And) I visit the supermarket
I am at the supermarket.

7.2.2 Steps Autodocumenter

aloe_sphinx.autosteps

An autodocumenter for Aloe steps built on top of sphinx.ext.autodoc.

This extension will identify functions decorated with step() (including private functions) and expose them in your
documentation with their step sentence.

7.2. Sphinx Extensions 25

Aloe Documentation, Release 0.1.20.dev8+g52925ba.d20191025

26 Chapter 7. Optional Extras

CHAPTER 8

Extending Aloe

class aloe.testclass.TestCase
The base test class for tests compiled from Gherkin features.

Aloe runs all tests within a unittest.TestCase. You can extend this class to run your tests with certain
other features, i.e. using Django’s TestCase.

27

https://docs.python.org/3/library/unittest.html#unittest.TestCase

Aloe Documentation, Release 0.1.20.dev8+g52925ba.d20191025

28 Chapter 8. Extending Aloe

CHAPTER 9

Extensions

• aloe_django – Django integration for Aloe.

• aloe_webdriver – Selenium integration for Aloe.

29

https://aloe.readthedocs.io/projects/aloe-django/
https://aloe.readthedocs.io/projects/aloe-webdriver/

Aloe Documentation, Release 0.1.20.dev8+g52925ba.d20191025

30 Chapter 9. Extensions

CHAPTER 10

Porting from Lettuce

Aloe, started as a fork of Lettuce, tries to be compatible where it makes sense. However, there are following incom-
patible changes:

• Aloe aims to use compatible Gherkin syntax, as such the following no longer work:

– Using " to indicate the indent of a multiline string; and

– Comments after steps.

• The each_scenario(), each_background() and outline() callbacks are removed. Use
each_example().

• The -s option for running particular scenarios is renamed to -n.

• Django-related functionality, including the harvest command, is moved to a separate project, aloe_django.

• terrain.py has no particular significance. It will be imported but only if it exists at the same directory with
the other step definition files, and not above it.

• Step files are loaded using the normal Python import mechanism. This means the directory they are in must
have a (possibly empty) __init__.py.

• Scenario outlines must be declared with “Scenario Outline”, and scenarios without examples must use “Sce-
nario” - Lettuce allowed using either.

31

https://github.com/aloetesting/aloe
http://lettuce.it/
https://cucumber.io/docs/reference
https://docs.python.org/3/using/cmdline.html#cmdoption-s
https://aloe.readthedocs.io/projects/aloe-django/

Aloe Documentation, Release 0.1.20.dev8+g52925ba.d20191025

32 Chapter 10. Porting from Lettuce

CHAPTER 11

Getting Started

Install Aloe:

pip install aloe

Write your first feature features/calculator.feature:

Feature: Add up numbers

As a mathematically challenged user
I want to add numbers
So that I know the total

Scenario: Add two numbers
Given I have entered 50 into the calculator
And I have entered 30 into the calculator
When I press add
Then the result should be 80 on the screen

Features are written using the Gherkin syntax.

Now run aloe features/calculator.feature and see it fail because there are no step definitions:

$ aloe features/calculator.feature
(...)
aloe.exceptions.NoDefinitionFound: The step r"Given I have entered 50 into the
calculator" is not defined

--
Ran 1 test in 0.001s

FAILED (errors=1)

Now add the definitions in features/__init__.py:

33

https://github.com/aloetesting/aloe
https://cucumber.io/docs/reference

Aloe Documentation, Release 0.1.20.dev8+g52925ba.d20191025

from calculator import add

from aloe import before, step, world

@before.each_example
def clear(*args):

"""Reset the calculator state before each scenario."""
world.numbers = []
world.result = 0

@step(r'I have entered (\d+) into the calculator')
def enter_number(self, number):

world.numbers.append(float(number))

@step(r'I press add')
def press_add(self):

world.result = add(*world.numbers)

@step(r'The result should be (\d+) on the screen')
def assert_result(self, result):

assert world.result == float(result)

And the implementation stub in calculator.py:

def add(*numbers):
return 0

Aloe will tell you that there is an error, including the location of the failing step, as if it was a normal Python test:

$ aloe features/calculator.feature

F
==
FAIL: Add two numbers (features.calculator: Add up numbers)
--
Traceback (most recent call last):

(...)
File ".../features/calculator.feature", line 11, in Add two numbers
Then the result should be 80 on the screen

File ".../aloe/registry.py", line 161, in wrapped
return function(*args, **kwargs)

File ".../features/__init__.py", line 25, in assert_result
assert world.result == float(result)

AssertionError

--
Ran 1 test in 0.001s

FAILED (failures=1)

Let’s implement the function properly:

def add(*numbers):
return sum(numbers)

34 Chapter 11. Getting Started

Aloe Documentation, Release 0.1.20.dev8+g52925ba.d20191025

Now it works:

$ aloe features/calculator.feature
.
--
Ran 1 test in 0.001s

OK

35

Aloe Documentation, Release 0.1.20.dev8+g52925ba.d20191025

36 Chapter 11. Getting Started

CHAPTER 12

History

Aloe originally started life as a branch of the Python BDD tool Lettuce. Like so many succulents, it grew into so much
more than that.

37

http://lettuce.it/

Aloe Documentation, Release 0.1.20.dev8+g52925ba.d20191025

38 Chapter 12. History

CHAPTER 13

Indices and tables

• genindex

• modindex

• search

39

Aloe Documentation, Release 0.1.20.dev8+g52925ba.d20191025

40 Chapter 13. Indices and tables

Python Module Index

a
aloe.steps.factoryboy, 23
aloe.tools, 11
aloe_sphinx, 24
aloe_sphinx.autosteps, 25
aloe_sphinx.gherkindomain, 24

41

Aloe Documentation, Release 0.1.20.dev8+g52925ba.d20191025

42 Python Module Index

Index

Symbols
-no-ignore-python

aloe command line option, 3
-test-class

aloe command line option, 3
-a ’!attr’

aloe command line option, 3
-a attr

aloe command line option, 3
-n N[,N...]

aloe command line option, 3
<feature>

aloe command line option, 3

A
aloe command line option

-no-ignore-python, 3
-test-class, 3
-a ’!attr’, 3
-a attr, 3
-n N[,N...], 3
<feature>, 3

aloe.after (built-in class), 16
aloe.around (built-in class), 16
aloe.before (built-in class), 15
aloe.before.all() (built-in function), 15
aloe.before.each_example() (built-in func-

tion), 15
aloe.before.each_feature() (built-in func-

tion), 15
aloe.before.each_step() (built-in function), 16
aloe.steps.factoryboy (module), 23
aloe.tools (module), 11
aloe.world (built-in class), 17
aloe_sphinx (module), 24
aloe_sphinx.autosteps (module), 25
aloe_sphinx.gherkindomain (module), 24

B
background (aloe.parser.Step attribute), 20

Background (class in aloe.parser), 20
behave_as() (aloe.parser.Step method), 21

C
container (aloe.parser.Step attribute), 21

D
description (aloe.parser.Feature attribute), 19
dialect (aloe.parser.Feature attribute), 19

F
failed (aloe.parser.Step attribute), 20
feature (aloe.parser.Background attribute), 20
feature (aloe.parser.Scenario attribute), 20
feature (aloe.parser.Step attribute), 21
Feature (class in aloe.parser), 19
from_file() (aloe.parser.Feature class method), 19
from_string() (aloe.parser.Feature class method),

19

G
gherkin:restep (directive), 24
given() (aloe.parser.Step method), 21
guess_types() (in module aloe.tools), 11

H
hashes (aloe.parser.Step attribute), 21
hook_not_reentrant() (in module aloe.tools), 11

K
keys (aloe.parser.Step attribute), 21

L
location (aloe.parser.Background attribute), 20
location (aloe.parser.Feature attribute), 19
location (aloe.parser.Scenario attribute), 20
location (aloe.parser.Step attribute), 21

43

Aloe Documentation, Release 0.1.20.dev8+g52925ba.d20191025

M
multiline (aloe.parser.Step attribute), 21

N
name (aloe.parser.Scenario attribute), 20

O
outline (aloe.parser.Step attribute), 22
outlines (aloe.parser.Scenario attribute), 20
outlines_table (aloe.parser.Scenario attribute), 20

P
parse() (aloe.parser.Feature class method), 19
parse_steps_from_string() (aloe.parser.Step

method), 22
passed (aloe.parser.Step attribute), 20

S
scenario (aloe.parser.Step attribute), 20
Scenario (class in aloe.parser), 20
sentence (aloe.parser.Step attribute), 22
Step (class in aloe.parser), 20
step() (in module aloe), 9
step_from_factory() (in module

aloe.steps.factoryboy), 23

T
table (aloe.parser.Step attribute), 22
tags (aloe.parser.Feature attribute), 19
tags (aloe.parser.Scenario attribute), 20
test (aloe.parser.Step attribute), 20
TestCase (class in aloe.testclass), 27
testclass (aloe.parser.Step attribute), 20
then() (aloe.parser.Step method), 21

W
when() (aloe.parser.Step method), 21

44 Index

	Running Aloe
	Writing Features
	Feature
	Background
	Scenario
	Scenario Outline
	Tags
	Feature Loading

	Defining Steps
	Common regular expressions for capturing data
	Step loading
	Tools for step writing
	Writing good BDD steps

	Hooks
	World
	Features, Scenarios and Steps
	Feature
	Background
	Scenario
	Step

	Optional Extras
	Factory Boy Integration
	Sphinx Extensions

	Extending Aloe
	Extensions
	Porting from Lettuce
	Getting Started
	History
	Indices and tables
	Python Module Index
	Index

