

Aloe: Selenium Webdriver extensions

aloe_webdriver provides utilities to help write Aloe [https://github.com/aloetesting/aloe] BDD tests
that run in the browser using Selenium [http://selenium-python.readthedocs.io/] webdriver.

	Basic Steps
	Navigation

	Text

	Links

	Forms
	Text Fields

	Buttons

	Checkboxes

	Radio Buttons

	Selects (Comboboxes)

	Other Steps
	Alerts

	Tooltips

	Checks based on HTML id
	Focus

	Frames

	CSS Selectors

	Screenshots

	Django Integration

	Writing good BDD steps
	Step Writing Utilities

Installing

pip install aloe_webdriver

Getting Started

Create a file in your steps/ directory, i.e. steps/browser.py and import
the Aloe-Webdriver steps.

You are also responsible for building and maintaining the lifecycle of your
selenium.webdriver referenced world.browser.

from contextlib import contextmanager

import aloe_webdriver
from aloe import around, world
from selenium import webdriver

@around.all
@contextmanager
def with_browser():
 world.browser = webdriver.Firefox()
 yield
 world.browser.quit()
 delattr(world, 'browser')

History

Aloe-Webdriver originally started life as the library
lettuce_webdriver [https://github.com/bbangert/lettuce_webdriver]. This is a fork of that library for Aloe [https://github.com/aloetesting/aloe].

Indices and tables

	Index

	Module Index

	Search Page

Basic Steps

import aloe_webdriver

Navigation

	
Step I visit “(.*?)”$

	Navigate to the provided (fully qualified) URL.

	
Step The browser’s URL should be “([^”]*)”$

	Assert the absolute URL of the browser is as provided.

	
Step The browser’s URL should contain “([^”]*)”$

	Assert the absolute URL of the browser contains the provided.

	
Step The browser’s URL should not contain “([^”]*)”$

	Assert the absolute URL of the browser does not contain the provided.

	
Step The page title should be “([^”]*)”

	Assert the page title matches the given text.

Text

	
Step I should see “([^”]+)”$

	Assert provided text is visible.

Be aware this text could be anywhere on the screen. Also be aware that
it might cross several HTML nodes. No determination is made between
block and inline nodes. Whitespace can be affected.

	
Step I should see “([^”]+)” within (d+) seconds?$

	Assert provided text is visible within n seconds.

Be aware this text could be anywhere on the screen. Also be aware that
it might cross several HTML nodes. No determination is made between
block and inline nodes. Whitespace can be affected.

	
Step I should not see “([^”]+)”$

	Assert provided text is not visible.

Be aware that because of the caveats of the positive case, the text MAY
be on the screen in a slightly different form.

Links

	
Step I click “([^”]*)”$

	Click the link with the provided link text.

	
Step I should see a link with the url “([^”]*)”$

	Assert a link with the provided URL is visible on the page.

	
Step I should see a link that contains the text “([^”]*)” and the url “([^”]*)”$

	Assert a link containing the provided text points to the provided URL.

Forms

import aloe_webdriver

Steps for referring to form controls typically support three methods to
identify the control:

	The label of the control. This is the recommended way to refer to a control
as it is the most descriptive.

	The control’s name. This can be used if you have multiple controls with
the same label (i.e. in formsets).

	The control’s id.

	
Step I should see a form that goes to “([^”]*)”$

	Assert the existence of a HTML form that submits to the given URL.

	
Step I click on label “([^”]*)”

	Click on the given label.

On a correctly set up form this will highlight the appropriate field.

	
Step I submit the only form

	Look for a form on the page and submit it.

Asserts if more than one form exists.

	
Step I submit the form with action “([^”]*)”

	Submit the form with the given action URL (i.e. the form that submits to
/post/my/data).

Text Fields

	
Step I fill in “([^”]*)” with “([^”]*)”$

	Fill in the HTML input with given label (recommended), name or id with
the given text.

Supported input types are text, textarea, password, month, time, week,
number, range, email, url, tel and color.

	
Step Input “([^”]*)” (?:has|should have) value “([^”]*)”

	Assert the form input with label (recommended), name or id has given value.

Buttons

	
Step I press “([^”]*)”$

	Click the button with the given label.

Checkboxes

	
Step I check “([^”]*)”$

	Check the checkbox with label (recommended), name or id.

	
Step I uncheck “([^”]*)”$

	Uncheck the checkbox with label (recommended), name or id.

	
Step The “([^”]*)” checkbox should be checked$

	Assert the checkbox with label (recommended), name or id is checked.

	
Step The “([^”]*)” checkbox should not be checked$

	Assert the checkbox with label (recommended), name or id is not checked.

Radio Buttons

	
Step I choose “([^”]*)”$

	Click (and choose) the radio button with the given label (recommended),
name or id.

	
Step The “([^”]*)” option should be chosen$

	Assert the radio button with the given label (recommended), name or id is
chosen.

	
Step The “([^”]*)” option should not be chosen$

	Assert the radio button with the given label (recommended), name or id is
not chosen.

Selects (Comboboxes)

	
Step I select “([^”]*)” from “([^”]*)”$

	Select the named option from select with label (recommended), name or id.

	
Step I select the following from “([^”]*?)”:?$

	Select multiple options from select with label (recommended), name, or
id. Pass a multiline string of options. e.g.

When I select the following from "Contact Methods":
 """
 Email
 Phone
 Fax
 """

	
Step The “([^”]*)” option from “([^”]*)” should be selected$

	Assert the given option is selected from the select with label
(recommended), name or id.

If multiple selections are supported other options may be selected.

	
Step The following options from “([^”]*?)” should be selected:?$

	

	
Step I should see option “([^”]*)” in selector “([^”]*)”

	Assert the select contains the given option.

	
Step I should not see option “([^”]*)” in selector “([^”]*)”

	Assert the select does not contain the given option.

Other Steps

Alerts

import aloe_webdriver

Validate the behaviour of popup alerts.

	
Step I should see an alert with text “([^”]*)”

	Assert an alert is showing with the given text.

	
Step I should not see an alert

	Assert there is no alert.

	
Step I accept the alert

	Accept the alert.

	
Step I dismiss the alert

	Dismiss the alert.

Tooltips

import aloe_webdriver

	
Step I should see an element with tooltip “([^”]*)”

	Assert an element with the given tooltip (title) is visible.

N.B. tooltip may not be visible.

	
Step I should not see an element with tooltip “([^”]*)”

	Assert an element with the given tooltip (title) is not visible.

	
Step I (?:click|press) the element with tooltip “([^”]*)”

	Click on a HTML element with a given tooltip.

This is very useful if you’re clicking on icon buttons, etc.

Checks based on HTML id

import aloe_webdriver

Using the HTML id is generally considered bad BDD, but sometimes it is
the only way to unambiguously refer to an element. It is strongly recommended
to find a more behavioral mechanism to describe your test.
See Writing good BDD steps.

	
Step The element with id of “([^”]*)” contains “([^”]*)”$

	Assert provided content is contained within an element found by id.

	
Step The element with id of “([^”]*)” does not contain “([^”]*)”$

	Assert provided content is not contained within an element found by id.

	
Step I should see an element with id of “([^”]*)”$

	Assert an element with the given id is visible.

	
Step I should see an element with id of “([^”]*)” within (d+) seconds?$

	Assert an element with the given id is visible within n seconds.

	
Step I should not see an element with id of “([^”]*)”$

	Assert an element with the given id is not visible.

	
Step I submit the form with id “([^”]*)”

	Submit the form with given id (used to disambiguate between multiple
forms).

Focus

	
Step Element with id “([^”]*)” should be focused

	Assert the element is focused.

	
Step Element with id “([^”]*)” should not be focused

	Assert the element is not focused.

Frames

Use these steps to switch frames if you need to work in a different frame or
iframe. It is recommended you wrap these steps up in a more behavioural
description. See Writing good BDD steps.

	
Step I switch back to the main view

	Swap Selenium’s context back to the main window.

CSS Selectors

import aloe_webdriver.css

Steps for selecting elements using CSS selectors.

Like with steps based on HTML id, these steps should be used cautiously to
avoid creating tests that do not describe the behaviours of your application.
See Writing good BDD steps.

Note

Be aware these steps require jQuery [https://jquery.com/]. If jQuery [https://jquery.com/] is not present it will be
added (v1.12).

	
Step I check $(“(.*?)”)$

	Check the checkbox matching the CSS selector.

	
Step There should be an element matching $(“(.*?)”)$

	Assert an element exists matching the given selector.

	
Step There should not be an element matching $(“(.*?)”)$

	Assert an element does not exist matching the given selector.

	
Step I click $(“(.*?)”)$

	Click the element matching the CSS selector.

	
Step There should be exactly (d+) elements matching $(“(.*?)”)$

	Assert n elements exist matching the given selector.

	
Step I fill in $(“(.*?)”) with “(.*?)”$

	Fill in the form element matching the CSS selector.

	
Step I follow the link $(“(.*?)”)$

	Navigate to the href of the element matching the CSS selector.

N.B. this does not click the link, but changes the browser’s URL.

	
Step $(“(.*?)”) should be selected$

	Assert the option matching the CSS selector is selected.

	
Step I select $(“(.*?)”)$

	Select the option matching the CSS selector.

	
Step I submit $(“(.*?)”)

	Submit the form matching the CSS selector.

	
Step There should be an element matching $(“(.*?)”) within (d+) seconds?$

	Assert an element exists matching the given selector within the given time
period.

Screenshots

import aloe_webdriver.screenshot_failed

Hooks to save screenshots and HTML source of the pages when tests fail.

Assumes a browser instance is stored in world.browser.

Whenever a step fails, the screen shot and the HTML source of the page
displayed in the browser are saved to the current directory. The file names
include the feature file name, scenario number and name and, if applicable,
the example number.

Consider the following feature:

features/account.feature
Feature: Account management

 Scenario: Log in
 Given I open the site
 And I enter username and password
 And I press "Log in"
 Then I should see "Logged in"

If there will be no “Logged in” text when expected, screenshot and the page
source will be saved to, respectively:

failed_features_account_feature_1_Log_in.png
failed_features_account_feature_1_Log_in.html

To change the directory where the screenshots are saved, override the constant
DIRECTORY as follows:

from aloe_webdriver import screenshot_failed

screenshot_failed.DIRECTORY = '/alternative/directory'

Note that the given directory should already exist.

Django Integration

import aloe_webdriver.django

Django-specific extensions for use with aloe_django [https://github.com/aloetesting/aloe_django].

	
Step I visit site page “([^”]*)”

	Visit the specific page of the site, e.g.

When I visit site page "/users"

Writing good BDD steps

The tools provided in Aloe-Webdriver form a reasonably thin wrapper
around Selenium [http://selenium-python.readthedocs.io/] and thus make it very easy to write imperative tests.
While the occasional imperative test is useful, it is frequently more useful
to abstract these into sub-steps of a more declarative test.

For example, take this example from the BBC essay: Tips for writing better
feature files [http://www.bbc.co.uk/blogs/internet/entries/ff14236d-098a-3565-b678-ff4ba5776a5f].

Here is a bad, imperative example:

Given I am on the login page
When I fill in "username" with "ABC"
And I fill in "password" with "XYZ"
And I checked the "Remember Me" checkbox
And I click on the "Submit" button
Then I should log into the system
And I should see "Welcome"

Instead a better, declarative example would be:

Given I have logged into the system
Then I should see "Welcome"

Use step.behave_as() to call the imperative steps from your own step
abstracts the mechanics of your website into something more descriptive. This
also makes it easier if you ever change the login process.

@step("I have logged into the system")
def i_log_in():
 '''Log in to the site'''
 step.behave_as('Given I am on the login page')
 step.behave_as('When I fill in "username" with "ABC"')
 step.behave_as('And I fill in "password" with "XYZ"')
 step.behave_as('And I checked the "Remember Me" checkbox')
 step.behave_as('And I click on the "Submit" button')
 step.behave_as('Then I should log into the system')

Step Writing Utilities

Aloe-Webdriver includes several utilities for writing Selenium [http://selenium-python.readthedocs.io/] tests.

	
class aloe_webdriver.util.ElementSelector(browser, xpath=None, elements=None, filter_displayed=False, filter_enabled=False)

	A set of elements on a page matching an XPath query.

	Parameters

	
	browser – world.browser

	xpath (str [https://docs.python.org/3/library/stdtypes.html#str]) – XPath query

	elements (list [https://docs.python.org/3/library/stdtypes.html#list]) – list of selenium.WebElement objects

	filter_displayed (bool [https://docs.python.org/3/library/functions.html#bool]) – whether to only return displayed elements

	filter_enabled (bool [https://docs.python.org/3/library/functions.html#bool]) – whether to only return enabled elements

Delays evaluation to batch the queries together, allowing operations on
selectors (e.g. union) to be performed first, and then issuing as few
requests to the browser as possible.

One of xpath or elements must be passed. Passing xpath creates a
selector delaying evaluation until it’s needed, passing elements
stores the elements immediately.

Can behave as an iterable of elements or a single element by proxying all
method calls, asserting that there is only one element selected.

Can be combined using the addition operator (+) to OR XPath queries
together.

	
evaluated

	Whether the selector has already been evaluated.

	
filter(displayed=False, enabled=False)

	Filter elements by visibility and enabled status.

	Parameters

	
	displayed – whether to filter out invisible elements

	enabled – whether to filter out disabled elements

Returns: an ElementSelector

	
aloe_webdriver.util.element_id_by_label(browser, label)

	The ID of an element referenced by a label`s ``for` attribute. The label
must be visible.

	Parameters

	
	browser – world.browser

	label – label text to return the referenced element for

Returns: for attribute value

	
aloe_webdriver.util.find_any_field(browser, field_types, field_name)

	Find a field of any of the specified types.

	Parameters

	
	browser – world.browser

	field_types (list [https://docs.python.org/3/library/stdtypes.html#list]) – a list of field type (i.e. button)

	value (string) – an id, name or label

Returns: an ElementSelector

See also: find_field().

	
aloe_webdriver.util.find_button(browser, value)

	Find a button with the given value.

Searches for the following different kinds of buttons:

<input type=”submit”>
<input type=”reset”>
<input type=”button”>
<input type=”image”>
<button>
<{a,p,div,span,…} role=”button”>

Returns: an ElementSelector

	
aloe_webdriver.util.find_field(browser, field_type, value)

	Locate an input field.

	Parameters

	
	browser – world.browser

	field_type (string) – a field type (i.e. button)

	value (string) – an id, name or label

This first looks for value as the id of the element, else
the name of the element, else as a label for the element.

Returns: an ElementSelector

	
aloe_webdriver.util.find_field_by_id(browser, field_type, id)

	Locate the control input with the given id.

	Parameters

	
	browser – world.browser

	field_type (string) – a field type (i.e. button)

	id (string) – id attribute

Returns: an ElementSelector

	
aloe_webdriver.util.find_field_by_label(browser, field_type, label)

	Locate the control input that has a label pointing to it.

	Parameters

	
	browser – world.browser

	field_type (string) – a field type (i.e. button)

	label (string) – label text

This will first locate the label element that has a label of the given
name. It then pulls the id out of the ‘for’ attribute, and uses it to
locate the element by its id.

Returns: an ElementSelector

	
aloe_webdriver.util.find_field_by_name(browser, field_type, name)

	Locate the control input with the given name.

	Parameters

	
	browser – world.browser

	field_type (string) – a field type (i.e. button)

	name (string) – name attribute

Returns: an ElementSelector

	
aloe_webdriver.util.find_field_by_value(browser, field_type, name)

	Locate the control input with the given value. Useful for buttons.

	Parameters

	
	browser – world.browser

	field_type (string) – a field type (i.e. button)

	name (string) – value attribute

Returns: an ElementSelector

	
aloe_webdriver.util.string_literal(content)

	Choose a string literal that can wrap our string.

If your string contains a ' the result will be wrapped in ".
If your string contains a " the result will be wrapped in '.

Cannot currently handle strings which contain both " and '.

	
aloe_webdriver.util.wait_for(func)

	A decorator to invoke a function, retrying on assertion errors for a
specified time interval.

Adds a kwarg timeout to func which is a number of seconds to try
for (default 15).

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 aloe_webdriver	

 	
 	
 aloe_webdriver.css	

 	
 	
 aloe_webdriver.django	

 	
 	
 aloe_webdriver.screenshot_failed	

 	
 	
 aloe_webdriver.util	

Index

 A
 | E
 | F
 | S
 | W

A

 	
 	aloe_webdriver.css (module)

 	aloe_webdriver.django (module)

 	
 	aloe_webdriver.screenshot_failed (module)

 	aloe_webdriver.util (module)

E

 	
 	element_id_by_label() (in module aloe_webdriver.util)

 	
 	ElementSelector (class in aloe_webdriver.util)

 	evaluated (aloe_webdriver.util.ElementSelector attribute)

F

 	
 	filter() (aloe_webdriver.util.ElementSelector method)

 	find_any_field() (in module aloe_webdriver.util)

 	find_button() (in module aloe_webdriver.util)

 	find_field() (in module aloe_webdriver.util)

 	
 	find_field_by_id() (in module aloe_webdriver.util)

 	find_field_by_label() (in module aloe_webdriver.util)

 	find_field_by_name() (in module aloe_webdriver.util)

 	find_field_by_value() (in module aloe_webdriver.util)

S

 	
 	string_literal() (in module aloe_webdriver.util)

W

 	
 	wait_for() (in module aloe_webdriver.util)

Getting Started

Create a file in your steps/ directory, i.e. steps/browser.py and import
the Aloe-Webdriver steps.

You are also responsible for building and maintaining the lifecycle of your
selenium.webdriver referenced world.browser.

from contextlib import contextmanager

import aloe_webdriver
from aloe import around, world
from selenium import webdriver

@around.all
@contextmanager
def with_browser():
 world.browser = webdriver.Firefox()
 yield
 world.browser.quit()
 delattr(world, 'browser')

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Aloe: Selenium Webdriver extensions

 		
 Basic Steps

 		
 Navigation

 		
 Text

 		
 Links

 		
 Forms

 		
 Text Fields

 		
 Buttons

 		
 Checkboxes

 		
 Radio Buttons

 		
 Selects (Comboboxes)

 		
 Other Steps

 		
 Alerts

 		
 Tooltips

 		
 Checks based on HTML id

 		
 Focus

 		
 Frames

 		
 CSS Selectors

 		
 Screenshots

 		
 Django Integration

 		
 Writing good BDD steps

 		
 Step Writing Utilities

_static/up-pressed.png

_static/up.png

